
Exascale Scientific Applications:

Programming Approaches for Scalability,

Performance, and Portability: KKRnano

Paul F. Baumeister1, Marcel Bornemann2, Dirk Pleiter1, and Rudolf Zeller3

1 Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich, Germany
2 Peter-Grünberg Institut, Forschungszentrum Jülich, 52425 Jülich, Germany
3 Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich,

Germany

Abstract. Addressing certain materials science problems, e.g. inhomo-
geneous materials, using Density Functional Theory will require exascale
compute capabilities as a sufficiently large number of atoms need to be
simulated. In this chapter we consider a particular approach and an im-
plementation that is optimized for extreme scale parallelism. We provide
an overview on the Kohn-Sham approach as well as its application areas
and discuss in detail the application KKRnano. Here we focus on recent
efforts to port this application to GPU-accelerated architectures.

1 Introduction

Materials development for advanced 21st century applications will be supported
more and more by an atom by atom understanding of the nanoscale origin of
their mesoscopic and macroscopic properties. For this goal, beyond empirical
concepts and experimental data, quantum mechanical calculations within Den-
sity Functional Theory (DFT) have proved to be an increasingly powerful tool.
DFT [17, 19] treats the many-electron system by single-particle equations using
the electron density instead of the many-electron wavefunction as the basic quan-
tity. Although this represents an obvious simplification, calculations for systems
with many atoms still represent a serious computational challenge since the com-
putational effort in conventional density functional calculations increases with
the third power of the number of atoms in the system. Systems with a few hun-
dred atoms can be treated routinely today, but larger systems require enormous
computer resources. Therefore, considerable effort has been spent in recent years
to reduce the effort by novel techniques, which exploit the so-called nearsight-
edness of electronic matter [21] by utilizing the exponential decay of the density
matrix. These techniques are continuously improved and with the advent of the
next generation of supercomputers it will become possible to simulate the quan-
tum effects, e.g., in entire semiconductor devices. These devices are currently
scaled down below the ten-nanometer range and thus contain about 105 atoms.

One of the new computer codes, which avoids the unfavourable cubic scaling
of the computational effort with system size, is KKRnano [23] which was designed

from the outset to run efficiently on supercomputers with the IBM Blue Gene/P
and Blue Gene/Q architectures. KKRnano, an all-electron code, which makes no
use of pseudopotentials, is based on the full-potential Korringa-Kohn-Rostoker
(KKR) multiple-scattering Green-function method as described in Ref. [20]. It
avoids the cubic increase of computing time by adopting the techniques explained
in Ref. [25] and has been used so far for systems containing as many as 105 atoms.
Such calculations could be processed with up to 1.8 million parallel tasks on the
5.9-Petaflop installation of the Blue Gene/Q architecture in Jülich [1].

In the following section we provide background information on the method-
ology of KKRnano and explain differences compared to other approaches in the
field. This is followed by a description of the algorithmic details of KKRnano
and an overview on performance characteristics in Sec. 3. We continue with
explaining our implementation (Sec. 4) and software practices (Sec. 5). Addi-
tionally, we present in Sec. 6 various performance results with particular focus
on a scalability analysis on Blue Gene/Q and on GPU accelerated POWER 8
nodes. Conclusively, in Sec. 7 we report an analysis of energy efficiency, before
we provide a summary and outlook towards exascale in Sec. 8.

2 Scientific Methodology

Contrary to most other DFT codes, which determine the Kohn-Sham wavefunc-
tions by solving the differential Kohn-Sham wave equation, in KKRnano the
Green function G(r, r′; ǫ) for the Kohn-Sham equation is obtained by solving
the integral equation

G(r, r′; ǫ) = G
ref(r, r′; ǫ) +

∫

dr′′Gref(r, r′′; ǫ)
[

veff(r′′) − v
ref(r′′)

]

G(r′′, r′; ǫ)

(1)
where the integral extends over the space covered by the system. Here, veff(r) is
the Kohn-Sham effective potential and Gref(r, r′; ǫ) the known Green function
of a suitable reference system with potential vref(r). In KKRnano the reference
system consists of constant repulsive potentials within non-overlapping spheres
around the atoms. With this choice the reference Green function has two im-
portant properties: It decays exponentially with the distance r− r

′ for ǫ values
relevant in DFT calculations and secondly its angular-momentum representation
around the atoms is easily obtained from the analytically known Green function
for the system with zero potential.

By dividing space into non-overlapping cells around the atoms, the angular-
momentum representation of the Green functions is used to separate the solution
of (1) into intracell and intercell parts. The intracell part requires the solution
of single-site integral equations where the integral extends only over the vol-
ume of a single cell. Since these equations are independent of each other, the
computational effort for this part scales linearly with system size and can be
parallelized in an efficient way. The intercell part requires to solve a large linear

matrix equation

Gnn′

LL′(ǫi) = Gref,nn′

LL′ (ǫi) +
∑

n′′

∑

L′′

Gref,nn′′

LL′′ (ǫi)
∑

L′′′

∆tn
′′

L′′L′′′(ǫi)G
n′′n′

L′′′L′(ǫi) (2)

for the Green function matrix elements Gnn′

LL′(ǫi). Here ∆tnL′′L′′′ is the difference
between single-cell scattering matrices in the system and the reference system.

Gref,nn′

LL′ are the known matrix elements of the reference Green function. The
indices n and L = (ℓ,m) label cells and angular-momentum components while
ǫi denotes integration mesh points used in the complex ǫ plane to obtain the fun-
damental quantity in DFT, the electronic density n(r). In KKRnano n(r) can
be calculated very precisely, if the effective potential around each atom is under-
stood as a non-local angular-projection potential [27] since for such potentials the
dependence of n(r) on the angular variables r̂ = r/|r| can be represented exactly
[28] so that only the dependence on the radial variable |r| must be calculated
numerically.

Massively parallel calculations with KKRnano have been used so far to inves-
tigate a variety of large disordered multicomponent alloys. Among others, these
are dilute magnetic semiconductors, phase change materials and high-entropy
alloys.

Dilute magnetic semiconductors are semiconductors doped with magnetic
impurities. These systems are technologically interesting because they can be
used for novel electronic devices, which utilize not only the electron charge but
also the electron spin. For such so-called spintronic devices it is important that
the materials are magnetic with Curie temperatures TC as high as room temper-
ature or above. Gadolinium-doped gallium-nitride is a system that has attracted
significant attention because magnetic moments of 4000 µB per Gd atom and
ferromagnetism above room temperature were claimed in experiments (µB is the
Bohr magneton). KKRnano was used to study realistic models of Gd-doped GaN
with co-doping by nitrogen or oxygen interstitials or Ga vacancies. It was found
that only Ga vacancies provide a robust path to magnetic percolated clusters
which can explain the ferromagnetism with rather large moments.

Phase-change materials, in particular alloys of germanium, antimony and
tellurium, are basic materials for DVD and BluRay technology because laser
heating can be used to switch their structure between crystalline and amor-
phous phases which have considerably different optical properties. KKRnano
was used to investigate how vacancies and vacancy clusters can explain the ex-
perimentally observed metal-insulator transition in GeSb2Te4. It was found that
vacancy cluster, which appear in the insulating phase and are dissolved in the
metallic phase, likely play an important role for the electronic resistance because
they can act as strong scattering centers. Other interesting systems are phase-
change materials doped by magnetic impurities because not only the electronic
resistivity but also the magnetic state can be changed by switching between the
two phases, which could be exploited for new multivalued memory devices. In
calculations with KKRnano it was found that doping of Ge2Sb2Te5, particularly

with chromium impurities, leads to a strong tendency for ferromagnetism with
TC values close to room temperature for large impurity concentrations.

High-entropy alloys consisting of four or more metallic elements, which crys-
tallize in simple face-centered cubic lattices, constitute a relatively new class of
materials with favourable properties like high hardness, wear resistance and cor-
rosion resistance. With KKRnano energetics and magnetism in CrFeCoNi alloys
were investigated. From the calculated local energies and their static fluctuations
it can be concluded that completely random solutions are not stable. Instead,
an L12 structure is energetically preferred where the Cr atoms, which show the
largest environmental effects with magnetic moments varying between −1.7µB

to +0.8µB, are at the cube corners and Fe, Co and Ni atoms are randomly
distributed at the other sites.

Sparse Dyson Equation Formally, without indices, the Dyson equation (1) is
equivalent to

X = ∆t + ∆tGrefX (3)

where the matrix X = ∆t+∆tG∆t is known as the scattering path operator in
the KKR method. Contrary to conventional KKR programs, in KKRnano this
matrix equation is not solved by Gaussian elimination, but iteratively as

X(i+1) = ∆t + ∆tGrefX(i) (4)

using the transpose-free quasi-minimal residual (TFQMR) method of Freund and
Nachtigal [11]. The use of an iterative solution method is associated with several
advantages. The first advantage is that the matrix elements Xnn′

LL′ can be deter-
mined separately for each atom n′ and for each angular-momentum component
L′ which makes straightforward parallelization possible. The second advantage
is that the exponential decay of the reference Green function Gref(r, r′, ǫ) can
be utilized easily. By neglecting exponentially small matrix elements of Gref in
(4) this matrix is turned into a sparse matrix where the number of non-zero
matrix elements is proportional to NclNat instead of proportional to N2

at as for
a dense matrix. Here Ncl is the number of atoms in a cluster in the vicinity of
each atom. Usually clusters consisting of 20 to 50 atoms are sufficient. [24] The
sparse matrix multiplication in (4) requires order N2

at operations which leads to a
computational effort that increases only quadratically with the number of atoms
and not cubically as in conventional DFT codes. The third advantage is that one
can terminate the iterations, if the desired precision of the results is achieved.
For instance, in DFT-based total-energy calculations the energy error is a few
meV per atom, if the bound for the QMR residual norm is set to ||r|| = 10−3,
and a few tenths of meV for ||r|| = 10−4 as shown in Ref. [25] for periodic model
systems consisting of supercells with 16384 copper or palladium atoms.

Linear-scaling O(N) mode The computational effort in KKRnano, which scales
quadratically with system size, if no compromise on precision is made, can be
reduced to a linear scaling by exploiting that the Green function G(r, r′, ǫ) decays
with the distance |r − r

′|. This decay is exponential for the complex values of

ǫ used in KKRnano, but considerably slower than the decay of the reference
Green function Gref(r, r′, ǫ), so that matrix elements Gnn′

LL′ in (2) or Xnn′

LL′ in (4)
are more important for larger distances between atom n and n′ than matrix

elements Gref,nn′

LL′ . Nevertheless, by trading some precision for computational

speed, the matrix elements Xnn′

LL′ can be neglected beyond truncation regions of
about Ntr > 1000 atoms. This reduces the overall computational complexity in
KKRnano to NitNclNtrNat, where Nit is the number of TFQMR iterations, and
makes calculations possible for large systems involving up to 100000 atoms. In
order to assess which values of Ntr are reasonable, the dependence of the ground-
state total energy on the number Ntr of atoms in the truncation region around
each atom was studied with KKRnano. Since highly ordered pristine metallic
systems are more demanding than insulators or disordered systems, the model
systems used were constructed by a 32-times-repetition of simple cubic unit
cells with four copper or palladium atoms in all three space directions. Using
Ntr values between 55 and 34251 for the constructed periodic supercells with
131072 atoms, it was found that for small truncation regions with 55 atoms the
error in the total energy can be as large as 0.1 eV per atom. While this accuracy
can be acceptable for certain applications, the usual goal in DFT calculations
is to determine the total energy with an accuracy of a few meV per atom.
In KKRnano this can be achieved even for the difficult ordered systems with
truncation regions containing a few thousand atoms [25, 26].

3 Algorithmic Details and Performance Characteristics

The following listing gives an overview on the sequence of tasks, which is executed
during one run of KKRnano:

.1 read input.

.1 read potentials.

.2 compute general atom quantities.

.3 compute E-dependent atom quantities.

.3 setup reference system.

.4 setup scattering path operator.

.4 invert operator using TFQMR.

.5 invoke sparse operator times block vector.

.4 use diagonal elements of inverse.

.3 .

.2 compute density.

.2 solve Poisson equation for new potential.

.1 store potential.

In the Kohn-Sham DFT scheme the effective potential and the density must
be determined self-consistently since they depend on each other in a non-linear
manner. Usually they are calculated alternately in about 50 to 200 self-consistency
steps. A typical run of KKRnano begins with reading some control parameters,

the coordinates of the cell centers, the radial integration mesh in each cell and
an initial guess for the effective potential. Before the self-consistency steps are
started, it is necessary to calculate the so-called shape functions, which describe
the geometric shape of the cells in an angular-momentum representation, and
the Madelung coefficients, which are used to determine the electrostatic part of
the effective potential from the charge multipole moments in each cell. These
parts of the calculation require no communication and are easily parallelized
over the cells.

During the self-consistency steps, the intracell part requires to solve systems
of (ℓmax + 1)2 coupled radial integral equations, as given in Ref. [27], in or-
der to obtain ∆tnLL′(ǫi) and to solve systems of linear equations of dimension

Ncl(ℓmax +1)2 to obtain Gr,nn′

LL′ (ǫi). Here, ℓmax is a cutoff parameter which essen-
tially determines the angular resolution of the projection potential in each cell
by restricting the projection to a subspace of spherical harmonics with ℓ ≤ ℓmax.
The standard choice in KKRnano is ℓmax = 3 leading to (ℓmax + 1)2 = 16
since common experience with the KKR method has shown that this is enough
for most purposes. The intracell part requires no communication and is easily
parallelized over the cells.

For the subsequent intercell part the matrices ∆tnLL′(ǫi) and Gref,nn′

LL′ (ǫi) with
Ncl values of n′ must be communicated to those other processors where they are
needed to solve the Dyson equation (4) by the TFQMR method. The matrices
X, ∆t and Gref in (4) are sparse matrices with X containing NatNtr(ℓmax + 1)4

non-zero elements and Gref containing NatNcl(ℓmax+1)4 non-zero elements while
∆t contains non-zero blocks of size (ℓmax + 1)4 only on the diagonal. During the
TFQMR iterations, which require no communication and are easily parallelized
over the cells, the sparsity structure of the matrices is exploited so that mul-
tiplication with zeros is avoided (see Sec. 4). After the TFQMR iterations the
density and the charge multipole moments in each cell are calculated by sim-
ply summing up the Green-function contributions at the mesh points ǫi with
appropriate integration weights.

For the calculation of the effective potential the charge multipole moments
of each cell, a data set of (2ℓmax + 1)2 = 49 numbers, must be communicated
to all other cells. This small amount of data together with the 256(Ncl + 1)
numbers, which must be transferred before the TFQMR iterations but only
to the participating cells, indicates that the principle communication time in
KKRnano is, in many situations, of not much importance.

In order to enable the use of more processors than atoms at the expense
of additional communication, KKRnano optionally employs two other levels of
parallelization besides the natural parallelization over the cells. One is over the
two magnetic spin directions in ferromagnetic systems and the other is over the
energy points ǫi. Since for physical reasons quite different numbers of TFQMR
iterations are needed for different values of ǫi, a simple distribution to paral-
lel tasks is inefficient. Instead, the ǫi are pooled in two or three groups where
each group is treated by one thread. Load balancing is achieved by dynamically
updating this grouping during the self-consistency steps.

Besides the coarse-grained parallelism described above, KKRnano can exploit
additional parallelization levels, particularly for the most time-consuming part,
the TFQMR iterations. For the Blue Gene/P JUGENE, which was installed at
the Jülich Supercomputing Centre from 2008 to 2012, an additional paralleliza-
tion over the 16 L components in the Dyson equation was implemented which
allowed to utilize all 294912 processors available on this machine for a ferro-
magnetic nickel-palladium system containing 3072 atoms. For the Blue Gene/Q
JUQUEEN, which has been operational at the Jülich Supercomputing Centre
since 2012, the parallelization strategy for the iterative calculation of the matrix
elements Xnn′

LL′ by using (4) was changed. Instead of calculating the columns
labelled by L′ by using several MPI processes, the block rows labelled by n are
calculated by several OpenMP threads. The advantages of the OpenMP imple-
mentation are simple use of the hybrid programming model of the Blue Gene/Q,
increased flexibility, because the number of block rows, which equals the number
of atoms, is much larger than the number of columns per atom, reduced mem-
ory requirements, because the shared memory on the nodes is exploited, and
increased flop-rate, because matrix-vector operations are replaced by matrix-
matrix operations. This enabled efficient use of all 1835008 parallel threads
available on Blue Gene/Q for a phosphorus-silicon system with 57344 atoms
and 57344 empty cells.

In typical runs most of the time is spent in the TFQMR algorithm. Each
iteration involves two matrix multiplications. The amount of floating point op-
erations as well as the amount of data, which needs to be loaded and stored, are
denoted by Ifp, Ild and Ist, respectively:

Ifp = 2Nit ·
Nat

NMPI
·NtrNcl · b

3 · 8 Flop , (5)

Ild = 4Nit ·
Nat

NMPI
·NtrNcl · b

2 · 16 Byte , (6)

Ist = 2Nit ·
Nat

NMPI
·Ncl · b

2 · 16 Byte (7)

where b = (ℓmax + 1)2. For more details see [9]. From these quantities the Arith-
metic Intensity (AI) can easily be determined as AI = Ifp/(Ild + Ist).

The original implementation supporting the O(N)-mode by truncation was
restricted to exactly one source atom per MPI process. In terms of programming,
this involved much less bookkeeping than the current version that supports nat =
Nat/NMPI source atoms per MPI process. One MPI process per atom also infers
a large memory overhead related to global arrays, the MPI library requirements
and, in particular, the scattering path operator. However, a lower total memory
consumption can be achieved with the flexibility of several source atoms per
MPI process since elements of the scattering path operator can be shared to
a large extent. This also yields an improved performance of the sparse matrix
multiplication as the arithmetic intensity (AI) of multiplying two square complex
matrices of dimension 16 is 4 Flop/Byte. The multiplication of a square matrix
and a rectangular matrix with the long dimension 16nat leads to an AI(nat) that

converges towards 5.32 Flop/Byte and is as high as 5.0 for five source atoms,
c.f. Figure 1.

Fig. 1. The nominal arith-
metic intensity (AI) for a
matrix multiplication A ×
X increases for larger ma-
trix dimensions. Here, A ∈
C

b×b and X ∈ C
b×nb. The

solid lines show the AI as
a function of n for b ∈
{4, 9, 16, 25, 36}.

4 Programming Approach

The main programming language for KKRnano is Fortran and here, the us-
age of Fortran90 or Fortran95 is encouraged over Fortran77, in particular when
adding new functionalities or restructuring old parts of the code. The character
of Fortran as a domain specific language is particularly useful to avoid many
explicit loops (Fortran90 (:)-syntax), natural handling of matrix data layout
and matrix operations and intrinsic support of complex numbers. Furthermore,
Fortran implies reasonable assumptions beneficial for compiler optimization, as
e.g. assuming no pointer-aliasing between arguments. In KKRnano, derived data
types assist to encapsulate data that belong to one module. This leads to rel-
atively short argument lists and, hence, readable code. Especially for the less
performance critical parts, this infers a structure that is easy to maintain. Each
derived data type is defined in a Fortran module that exposes a creation and a
destruction routine. By keeping memory management statements at well defined
locations, it becomes easier to maintain the code and adapt data layout to new
architectures.

The following code block gives an example of a simple derived data type:

module AtomicCoreData mod
private

public : : AtomicCoreData , c reate , des t roy

type AtomicCoreData
integer : : e l l c o r e
double precision : : Ecore
double precision : : co recharge
integer : : irmd

double precision , allocatable : : rhocat (: , :)
endtype

interface c r e a t e
module procedure createAtomicCoreData

endinterface

interface dest roy
module procedure destroyAtomicCoreData

endinterface

contains

subroutine createAtomicCoreData (s e l f , irmd)
type (AtomicCoreData) , intent (inout) : : s e l f
integer , intent (in) : : irmd

s e l f%irmd = irmd

s e l f%e l l c o r e = −1
s e l f%Ecore = 1 . d9

allocate (s e l f%rhocat (irmd , 2)) ! bo th sp in d i r e c t i o n s

s e l f%rhocat = 0 . d0
endsubroutine

e l ementa l subroutine destroyAtomicCoreData (s e l f)
type (AtomicCoreData) , intent (inout) : : s e l f

integer : : i s t
deallocate (s e l f%rhocat , stat=i s t)

endsubroutine

endmodule

KKRnano exploits the Fortran90 feature of overloading names of routines
(generic names) using the interface statement. With that, any derived data
type in KKRnano can, for example, always be destructed by

call destroy(core_state)

which causes all dynamically sized member fields to be deallocated. The elemental
keyword even adds more comfort since that allows a single call onto an array of
core state data items:

call destroy(core_states(:))

In general, name overloading, encapsulation and the Fortran-module syntax
for namespacing with the only-syntax allow for a well-structured approach to-
wards large software packets written in Fortran90 that can be maintained with
relatively low efforts and facilitate porting to new architectures.

The truncation approach which is made in KKRnano asks for a matrix stor-
age format that reflects the resulting block sparsity pattern. To this aim we
employ the Variable Block Row format (VBR) where only the elements in non-
zero blocks alongside four pointer arrays for structure description are stored.[22]
The pointer array KVST contains the global row index and simultaneously the
global column index of each block row since in KKRnano only square blocks
occur. The block-wise column index of each block is stored in JA. KA indexes
into the beginning of each block in the array A where all elements from non-
zero blocks are saved. Elements in IA point to the beginning of each block row
in both JA and KA. KVST, IA and KA are supplemented by one concluding
element to indicate the end of the matrix structure. In the example in Fig. 2
KVST has three elements plus the concluding element. The first three elements
point to the beginning of each block row while the fourth element points behind
the last block row to indicate where the matrix structure ends. As the example
matrix is composed of five non-zero blocks, JA contains five entries and each
entry gives the block column index of the corresponding block in row-major or-
der, e.g. first block can be found in 1st block column, second block in 3rd block
column, third block in 2nd block column etc.. KA also holds as many entries
as non-zero blocks plus one concluding entry similar to that in KVST. Since in
this example all blocks have equal size (2x2), there is a constant increment of 4
for the entries in KA. Finally, IA accomodates four pointer entries (three block
rows plus concluding element) and each, apart from the last one, points to the
start of a new block row in JA and KA.

Scalability KKRnano makes use of the Message Passing Interface (MPI) for
exploiting the distributed memory parallelism. After each operator inversion
information related to atoms, which belong to the same truncation cluster but
are processed by different MPI ranks, needs to be exchanged. Therefore, point-to-
point communication operations dominate. For typical work-loads the time spent
in the inverter is significantly larger than the time required for communication.

For the implementation of more than one source atom per MPI process
(nat > 1), the bookkeeping during communication becomes difficult, in particu-
lar using the truncation mode. Therefore, the communication of the ingredients
required to construct the scattering path operator makes use of one-sided MPI
communication routines. A call to MPI Win create allows the other MPI pro-
cesses to access the locally stored quantities.

For testing the scalability of the O(N)-mode, we selected an input deck with
2197 atoms. It features a supercell of 133 unit cells of pristine face centered cubic
(FCC) crystal. This is large enough to perform truncation with a truncation
cluster size Ntr of 1289, i.e. there are six shells of target atoms around each
source atom.

The test indicated that about 32 % of the runtime for an energy point
was spent in communication for the reference Green function. Here, 2197 MPI
processes exchanged 13 · 16 · 16 double complex with 1288 other processes,

1 2 0 0 3 4

5 6 0 0 7 8

0 0 9 10 11 12

0 0 13 14 15 16

0 0 0 0 17 0

0 0 0 0 0 20

































































1

2

3

4

5

6

1 3 5 7KVST

1 3 5 7IA

1 3 2 3 3JA

1 5 9 13 17 21KA

1 5 2 6 3 7 4 8 9 13 10 14 11 15 12 16 17 0 0 20A

Fig. 2. A 6x6 sparse matrix consisting of nine 2x2-blocks stored in VBR format. The
five non-zero blocks are highlighted in blue.

i.e. 280.66 GiByte per energy point were transferred over the network. The high
percentage means that other ways of communication should be explored.

An experiment with direct point-to-point, non-blocking communication showed
that the communication time can be reduced significantly. While the memory-
saving one-sided communication routine took 2.2 sec, direct MPI messages were
faster by 5×, so that only about 8.4 % of the iteration time were spent for com-
munication.

In order to analyze both runs, an instrumentation with ScoreP [18, 7] gen-
erates profile summaries (or traces) that can be analyzed using Scalasca [6, 14,
13], see Figure 4. The number of visits to each function, the time spent in it
and, very important for the analysis of the communication pattern, the number
of bytes sent and received. However, the latter numbers are not given in the
case of one-sided communication. Scalasca was used to extract the time spent in
the communication functions. As each process delivers a timing result for each
function call that has not been filtered out, the display of the distribution of
time values is particularly useful, see rightmost panel in Figure 4.

I/O It is often underestimated how I/O can limit scalability of an application.
KKRnano performs tasking-local POSIX I/O operations, which on currently
available parallel file systems do not scale. To mitigate this problem we use
SIONlib [12], which is a library that combines accesses to one file per MPI task
into accesses to shared files. It requires only minimal changes to the application
as it allows to continue using the most popular functions for reading and writing.

Fig. 3. The truncation
sphere with a radius of six
lattice constants contains
1289 target atoms in 3D
using a supercell of 133 FCC
unit cells, i.e. 2197 source
atoms. This input deck is
designed so that truncation
spheres do not overlap with
their periodic images and
is used for profiling the
application in O(N)-mode.

GPU Acceleration One of the most promising approaches for realizing exas-
cale computers is the use of compute devices, which are operated at relatively
low clock frequency but are capable to perform an extremely larger number
of floating-point operations each clock cycle. One increasingly popular exam-
ple of such devices are Graphics Processing Units (GPU). Due to the low clock
frequency they feature a throughput of floating-point operation versus power
consumption ratio that is much higher compared to standard CPUs. Efficient
exploitation of such devices requires applications with a high level of parallelism
and large Arithmetic Intensity. These are exactly the features of the TFQMR
solver in KKRnano. For this reason this solver has been ported to GPUs [9] in
order to be able to exploit the performance of GPU-accelerated HPC systems.

This custom-tailored solver is written in C++ employing the CUDA toolkit
provided by NVIDIA. The basic structure of the existent TFQMR can be adopted
but data transfer from host to device and vice versa has to be taken care of and
matrix operations must be implemented in a CUDA-conform manner. The lat-
ter can be easily achieved by using cuBLAS routines as they are included in
the CUDA toolkit. However, tests showed that in our area of application where
sparse matrices are essential self-written algorithms can outperform those rou-
tines. Therefore, KKRnano does not rely on library function calls but is equipped
with its own custom-built linear algebra routines that handle matrices stored in
a block sparse format.

Portability As discussed above, a typical work-load based on KKRnano spends
most of it’s time in the TFQMR solver. The default implementation of this
solver comprises 400 lines-of-code. For this reason we can apply the following
portability strategy:

– The bulk of the code is kept Fortran 95 compliant.

– Parallelization of the application is compliant to MPI version 3 and OpenMP
version 3.

– Optionally, KKRnano can be linked to specialised versions of the TFQMR
solver.

Fig. 4. Cube viewer for profiles analyzed by the Scalasca tool. Metrics are selected in
the left panel, the investigated function is shown embedded into its call tree in the
center panel and statistics about the time per call or other quantities are shown on the
right.

The application can thus easily be ported to any platform supporting Fortran 95,
MPI and OpenMP. These requirements are sufficiently easy to fulfill such that
KKRnano runs both, on almost any HPC system as well as Linux laptop com-
puters. In fact, it has been ported to a variety of HPC systems, including IBM
Blue Gene, different clusters based on Intel Xeon processors or IBM POWER
processors (with or without GPUs). As this does not guarantee the required
high level of performance for HPC systems, we do foresee specialised versions
of the solver, which might be implemented in a non-portable way. One example
for this approach is our GPU-accelerated version of this solver, which is imple-
mented in CUDA (see section 4). The efforts for creating such specialised code
versions is typically moderate and thus a good balance between additional efforts
and performance gains can be obtained.

External Libraries Wherever possible, standard linear algebra is performed in
BLAS [3] and LAPACK [5] routines. Here, vendor-tuned libraries, where avail-
able (MKL/ESSL), deliver good performance. In particular, matrix-matrix mul-
tiplications for complex matrices (zgemm) are used intensively for small and mid-
sized matrices. Another essential ingredient are inversion routines like zgetrf,
zgetrs or zgetri, which make use of efficient vendor-provided implementations
on matrices of dimension b ·Ncl.

5 Software Practices

The development of KKRnano is facilitated by a software repository running the
version control system git. The corresponding git-server [4] allows distributed
development and a simple management of source code versions and documenta-
tion. The software project management system TRAC [8] is used as a web front
end for meeting minutes and ticketing besides uncomplicated access to single
files from different uploaded branches.

Conditional Compilation and Metaprogramming KKRnano makes use of the
preprocessor. This means that most source files carry the suffix .F90 rather
than .f90. This envokes the Fortran-internal preprocessor. It is used here to
deactivate code that was included for testing purposes with -D NDEBUG and
activates machine specific solutions in selected routines.

As mentioned earlier, Fortran90 supports generic functions that allow for
well-readable high-level routines. Nevertheless, C++-like template programming
is not supported. Some KKRnano code structure, however, would benefit from
such language capabilities. The workaround for this missing feature of the pro-
gramming language is code generation with small Python scripts or text re-
placement with the Linux command line tool sed. The latter is used for com-
munication routines. Besides all the advantages to the ease of programming, the
drawback of an explicit routine interface that is being checked during compi-
lation is that interfaces for many data types need to be generated. Due to the
absence of template programming, KKRnano generates communication routines
for double precision, double complex, integer using text replacement with
sed. Although solutions using the preprocessor are viable, sed has the advantage
that the other preprocessor directives survive the manipulation.

Furthermore, a Python script is used to generate the routine that reads the
input file. Since various data types and combinations (with or without default
value) are required for the user control of KKRnano, the input file reader is re-
generated by the Python code when an input file keyword is added or changed
or default values are adjusted.

Automatic Documentation The KKRnano documentation is twofold: Most fea-
tures are described for practical reasons in the source code following the Doxygen
convention [16]. However, some issues which should be addressed in more detail
as well as small tutorials are available in a ’DokuWiki’ [2]. The importance of
a good documentation cannot be overestimated since in KKRnano a lot of pa-
rameters have to be introduced whose meaning and significance in the bigger
context is not necessarily clear at first sight. Therefore, parameters that are in
KKRnano commonly defined within F90 types are extensively described and the
purposes of subroutines are explained if instructive.

Verification and Validation The correctness of the code is verified using a set of
regression tests collected in tests.py. Here, the test cases inherit from unittest

and compare the total energy results of serial runs on small input decks (up to

16 source atoms) with precalculated values. Furthermore, verification of the MPI
parallelisation can be switched on checking if the results stay unchanged when
source atoms are distributed to up to a single source atom per process.

The script tests.py also provides validation: The convergence with respect
to ℓmax is checked for a single atom of copper in face centered cubic symmetry. At
the same time, this test is used to reveal implementation errors when compiled
with the -checkbounds option.

The full set of regression tests runs about 20 minutes on a workstation. Single
subtests can be as fast as 2 seconds.

Distribution and Licensing Access to the KKRnano-repository is currently avail-
able in the context of scientific collaboration with the Institute for Advanced
Simulation since the code has not yet been released under a public license.

Build System KKRnano uses traditional makefiles. A single Makefile can take
various configuration options to specify the flavor of executable one wants to
build. The options control the machine type to compile for, the compilers used
and the compiler flags. In particular the preprocessor macros are controlled here,
whereas some of them will be set depending on the machine type. The depen-
dency table of the source files is explicitly expressed in the makefile. This is
necessary to ensure that Fortran modules are already refreshed and present in
the module directory before compiling a source file that includes them via use-
statement. The dependency table can be constructed using a tool envoking grep

on all source files. A prerequisite here is that developers have to stick to the
rule that only one module is defined inside one source file and the name of the
module matches the name of file (except for the .F90 suffix and case sensitivity).
Parallel compilation (make -j) allows a full recompilation plus linking in about
15 seconds (-O3) on a workstation with 4 cores.

6 Performance Results

Scaling on BlueGene/Q A weak scaling analysis for KKRnano has been con-
ducted on the Blue Gene/Q installation JUQUEEN at Jülich Supercomputing
Center. Its peak performance is 5.9 PetaFlop/s. Here, the code has been applied
to a host crystal of silicon with a single impurity atom of phosphorous that
adds a shallow donor state into the band gap of the semiconductor. Meaningful
input decks can easily be generated for any size of the host material. The lat-
tice structure of Si is the diamond structure, which exhibits relatively large void
spaces in between the atoms. In order to describe it properly, a body-centered
structure is set up so that there are two Voronoi cells per atom, one containing
an atomic core and one for the void. The results of the measurements with four
OpenMP threads per MPI process can be seen in Figure 5. As the characteristic
scaling behaviour of the order(N)-mode starts when the system is larger than
the truncation cluster, the measurements begin at two thousand cells. Despite
some deviations from the linear behaviour that might stem from suboptimal job

partitions on the machine, the solver time per cell is around 645 seconds for 1k,
8k and 65k atoms.

2ki 4ki 8ki 16ki 32ki 64ki 128ki
Number of cells

10
6

10
7

10
8

S
o

lv
e

r
ti
m

e
 (

c
o

re
-s

e
c
)

1024 2048 4096 8192 16384 32768 65536
Number of atoms

Fig. 5. BlueGene/Q weak scaling of a the multiple scattering solver for a single atom
of phosphorous in a host crystal of silicon. Two cells per atom have been used to
describe the diamond structure with bcc Voronoi cells, one MPI process per cell and
four OpenMP threads per MPI process. Around 2000 cells were inside the truncation
cluster, 1.7% for the largest calculation.

Performance on GPU-accelerated POWER8 nodes An in-depth performance
analysis of the GPU-accelerated TFMQR solver on server based on POWER8
processors and NVIDIA Tesla K40m GPUs has been published in [9]. To improve
utilization of the GPU it is required to use the multi-process service (MPS) fea-
ture to run multiple solvers concurrently. Benchmark data shows that at least

Table 1. Times tPOSIX and tSIONlib (in seconds) on
the BlueGene/Q JUQUEEN used to write the ef-
fective potential task locally to non-shared files and
to a shared SIONlib file for a system with 114688
cells using 114688 MPI tasks and a varying number
of OpenMP threads per MPI task.

NOpenMP Ntasks tdirect tsionlib

2 229376 101 10.1
4 458752 166 11.1
8 917504 434 7.3

16 1835008 831 8.1

four GPU tasks are required to maximize performance on a K40m GPU for a
typical problem size (see Fig. 6). It can also be observed that performance is
best when the number of atoms in the truncation cluster Ntr is 1000 or more.
This can be ascribed to the GPU architecture which favours large matrices as
they appear when working with a big truncation cluster.

Fig. 6. a) Performance of GPU-TFQMR solver using 1000 iterations with varying trun-
cation cluster size Ntr. b) Efficiency of the multi-process service (mps) on an NVIDIA
K40m

I/O performance using SIONlib The standard output of KKRnano consists of
the effective potential, the charges (in angular-momentum decomposition), the
total-energy contributions and the forces on the atoms. In the original version
of KKRnano the output to the file system was implemented using task-local,
unformatted Fortran writes to non-shared files. The individual record for each
cell was written by the MPI process responsible for that cell. While charges,
total-energies and forces are needed only after the last self-consistency step,
the situation is different for the effective potential. Usually, for monitoring and
improving convergence of the self-consistency steps about 15 steps are done in
one production job which requires that the potential is written to the file system
at least once per job. It is, however, desirable to write the potential after every
self-consistency step to obtain checkpoint data. They can be used to restart the
calculation, for instance, after an unexpected crash of a production job or if the
self-consistency process was manually terminated because its behaviour changed
from convergent to divergent.

Although the potential comprises only a few hundred kBytes per cell, for large
systems the use of separate files for each MPI rank severely limits the scalability.
This is obvious in Table 1 where the third column shows the time which was used
to write about 10 GByte for a system with 114688 cells using between two and
sixteen OpenMP threads per MPI process. The time for output approximately
doubles if the number of processing units is doubled unless SIONlib is used.

To alleviate this problem we use SIONlib [12], which is a library that pre-
vents file-system overhead arising from hundreds of thousands of task-local files
by using a small number of shared files. SIONlib employs a communication layer
to aggregate metadata among the tasks and exploits the I/O infrastructure and
the file-system properties. The use of SIONlib in KKRnano, which required only
minimal changes to the code by replacing the standard functions for reading and
writing by the appropriate SIONlib functions, gave impressive improvements for
the output time as the fourth column of Table 1 shows. The time for output re-
mains almost constant at a level far below the total time used in a self-consistency
step.

The current version of KKRnano is expected to scale to a significantly larger
number of tasks without being limited by I/O performance. There is more room
for improvements by better tuning of the SIONlib parameters. No fine-tuning
was attempted for Table 1 where only a single, shared SIONlib file was used.
Tests using eight SIONlib files gave reduced times of 3.6 and 2.7 seconds for
229376 and 458752 tasks.

7 Energy Considerations

The combination of a throughput-optimized compute accelerator with a general-
purpose CPU makes the choice of clock speeds of both chips an important
task. As shown by Hater et al. [15] on a heterogeneous compute node with two
POWER8 CPUs and two K40m GPUs, dynamic voltage and frequency scaling
(DVFS) can be tuned to minimize the energy to solution. Here, the POWER8
processors are featuring a rich cache hierarchy and also offer a substantial float-
ing point performance, about 20 % that of the GPUs. The energy to solution
becomes a function of the CPU frequency. Despite the high base power con-
sumed by the main memory, the best choice of CPU frequency is not the highest
possible. Measurements of the total power consumption of the compute node
(dots in Figure 7) infer that the POWER CPUs should solve the iterative inver-
sion problem at 90 % of the max. CPU frequency to achieve the highest energy
efficiency. The findings can be explained by an energy model (solid line in Fig-
ure 7) that is derived from a performance model extended by prefactors for
the power consumption that are extracted from device-resolved power measure-
ments. For the GPU solver, the optimal frequency is the maximum of 875 MHz
and the energy to solution for the input parameters used in the investigation is
lower by about 40 % compared to the CPU solver.

2.0 2.5 3.0 3.5 4.0
fCPU (GHz)

36

38

40

42

44

46

48

50

52

E
ne

rg
y

(k
J
)

Fig. 7. Energy to solution for the QMR solver running on POWER8 processors as a
function of the CPU frequency. Dots show the results of power measurements while
the solid line represents the energy model. Figure from Hater et al. [15].

8 Summary and Outlook

In this chapter we provided an introduction into the Korringa-Kohn-Rostoker
method and described its features, which allows for addressing challenging prob-
lems in materials science. One important feature is the extreme scalability that
can be achieved on massively-parallel computers, which was demonstrated with
one specific implementation of this method, namely KKRnano. We consider it
as a showcase that a systematic approach to increase the parallelism of an ap-
plication pays off.

For KKRnano we presented details of the implementation and, in particular,
aspects on how it is parallelized. Furthermore, we discuss our programming ap-
proach aiming for both, maintainability as well as portability of the code. This
allows us to run the code on desktop systems for code development and on HPC

systems of the highest performance class when using KKRnano for research. On
the latter systems a very high level of scalability could be demonstrated, e.g. on
an IBM Blue Gene/Q system at Jülich Supercomputer Centre with 458,752 cores.

Based on an analysis of the properties of the key algorithms and their im-
plementation in KKRnano we expect that the level of parallelism can be further
significantly increased. This will be crucial to exploit future architectures, e.g. ar-
chitectures including GPUs as compute accelerators. These devices feature an
extremely large throughput of floating-point operations per clock cycle. As it can
be expected that this hardware level parallelism will further increase, KKRnano
is in a good position to exploit these future compute technologies efficiently.
This could already be demonstrated using node architectures, which are similar
to those of the Summit supercomputer, which will be installed at Oak Ridge
National Lab. The simple properties of the most performance critical kernel,
namely the operator solver based on the TFMQR algorithm, makes this ap-
plication also suitable for unconventional architectures. An interesting example
are processing-in-memory architectures, where data transport is avoided by in-
tegrating compute capabilities into the memory, which can help to significantly
reduce energy-to-solution [10]. As power consumption is expected to become the
major limiting factor for further increase of HPC system performance, it will
become more and more important to explore such unconventional architectures
towards exascale computing.

Acknowledgments

We would like to thank all contributors to the application, in particular Alexan-
der Thiess and Elias Rabel, who proved the linear scaling and brought the code
into shape. For support on the Blue Gene systems, especially focussed to I/O,
we thank Wolfgang Frings and Kay Thust from the Jülich Supercomputer Cen-
tre. We would also like to acknowledge the efforts towards the GPU imple-
mentation by Thorsten Hater in the context of the Exascale Innovation Centre
and the POWER Acceleration and Design Center. Finally, we thank Jiri Kraus
(NVIDIA) for consultancy.

References

1. http://www.fz-juelich.de/ias/jsc/EN/Expertise/High-Q-Club/node.html/, ac-
cessed: 2016-08-21

2. https://www.dokuwiki.org/
3. BLAS Basic Linear Algebra Subprograms. http://www.netlib.org/blas/, accessed:

2016-07-20
4. git. https://git-scm.com/, accessed: 2016-07-20
5. LAPACK – Linear Algebra PACKage. http://www.netlib.org/lapack/, accessed:

2016-07-20
6. Scalasca. http://www.scalasca.org/, accessed: 2016-07-21
7. Score-P. http://www.vi-hps.org/projects/score-p/, accessed: 2016-07-21
8. The Trac project. https://trac.edgewall.org/, accessed: 2016-07-20

9. Baumeister, P.F., Bornemann, M., Bühler, M., Hater, T., Krill, B., Pleiter,
D., Zeller, R.: Addressing Materials Science Challenges Using GPU-accelerated
POWER8 Nodes, pp. 77–89. Springer International Publishing, Cham (2016)

10. Baumeister, P.F., Hater, T., Pleiter, D., Boettiger, H., Maurer, T., Brunheroto,
J.R.: Exploiting In-Memory Processing Capabilities for Density Functional Theory
Applications. Springer International Publishing, Cham (2016)

11. Freund, R.W., Nachtigal, N.: QMR: a quasi-minimal residual method for non-
Hermitian linear systems. Numerische Mathematik 60(1), 315 (1991)

12. Frings, W., Wolf, F., Petkov, V.: Scalable Massively Parallel I/O to Task-Local
Files. In: Proceedings of the Conference on High Performance Computing Net-
working, Storage and Analysis. pp. 17:1–17:11. SC ’09, ACM, New York, NY,
USA (2009), http://doi.acm.org/10.114/1654059.1654077

13. Geimer, M., Hermanns, M.A., Siebert, C., Wolf, F., Wylie, B.J.N.: Scaling Per-
formance Tool MPI Communicator Management, pp. 178–187. Springer Berlin
Heidelberg, Berlin, Heidelberg (2011)

14. Geimer, M., Wolf, F., Wylie, B.J.N., Ábrahám, E., Becker, D., Mohr, B.: The
scalasca performance toolset architecture. Concurrency and Computation: Practice
and Experience 22(6), 702–719 (2010), http://dx.doi.org/10.1002/cpe.1556

15. Hater, T., Anlauf, B., Baumeister, P., Bühler, M., Kraus, J., Pleiter, D.: Exploring
Energy Efficiency for GPU-Accelerated POWER Servers. Springer International
Publishing, Cham (2016)

16. van Heesch, D.: git. http://www.doxygen.org/, accessed: 2016-07-20
17. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864–B871

(Nov 1964), http://link.aps.org/doi/10.1103/PhysRev.136.B864
18. Knüpfer, A., Rössel, C., Mey, D.a., Biersdorff, S., Diethelm, K., Eschweiler, D.,

Geimer, M., Gerndt, M., Lorenz, D., Malony, A., Nagel, W.E., Oleynik, Y., Philip-
pen, P., Saviankou, P., Schmidl, D., Shende, S., Tschüter, R., Wagner, M., Wesarg,
B., Wolf, F.: Score-P: A Joint Performance Measurement Run-Time Infrastructure
for Periscope,Scalasca, TAU, and Vampir, pp. 79–91. Springer Berlin Heidelberg,
Berlin, Heidelberg (2012)

19. Kohn, W., Sham, L.J.: Self-consistent equations including exchange
and correlation effects. Phys. Rev. 140, A1133–A1138 (Nov 1965),
http://link.aps.org/doi/10.1103/PhysRev.140.A1133

20. Papanikolaou, N., Zeller, R., Dederichs, P.H.: Conceptual improvements of the
KKR method. J.Phys.: Condens. Matter 14(11), 2799–2824 (2002)

21. Prodan, E., Kohn, W.: Nearsightedness of electronic matter. Proc. Natl. Acad. Sci.
USA 102, 11635–11638 (2005)

22. Saad, Y.: Sparskit: a basic tool kit for sparse matrix computations - version 2
(1994)

23. Thiess, A., Zeller, R., Bolten, M., Dederichs, P.H., Blügel, S.: Massively parallel
density functional calculations for thousands of atoms: KKRnano. Phys. Rev. B
85, 235103 (Jun 2012)

24. Zeller, R.: Evaluation of the screened Korringa-Kohn-Rostoker method for accurate
and large-scale electronic-structure calculations. Phys. Rev. B 55, 9400–9408 (April
1997)

25. Zeller, R.: Towards a linear-scaling algorithm for electronic structure calculations
with the tight-binding Korringa-Kohn-Rostoker Green function method. J. Phys.:
Condens. Matter 20(29), 294215 (2008)

26. Zeller, R.: Linear scaling for metallic systems by the Korringa-Kohn-Rostoker
multiple-scattering method. In: Papadopoulos, M.G., Zalesny, R., Mezey, P.G.,

Leszczynski, J. (eds.) Linear-Scaling Techniques in Computational Chemistry and
Physics: Methods and Applications, pp. 475–505. Challenges and Advances in Com-
putational Chemistry and Physics, Springer Netherlands, Dordrecht (2011)

27. Zeller, R.: Projection potentials and angular momentum convergence of total en-
ergies in the full-potential Korringa-Kohn-Rostoker method. J. Phys.: Condens.
Matter 25(10), 105505 (2013)

28. Zeller, R.: The Korringa-Kohn-Rostoker method with projection potentials: exact
result for the density. J. Phys.: Condens. Matter 27(30), 306301 (2015)

